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Abstract

This paper presents an analysis for an unsteady conjugated heat transfer problem in thermally developing laminar

pipe flow, involving two-dimensional wall and fluid axial conduction. The problem is solved numerically by a finite-

difference method for a thick-walled, infinitely long, two-regional pipe which is initially isothermal with a step change in

the constant outside temperature of the heated downstream section. A parametric study is done to analyze the effects of

four defining parameters, namely the Peclet number, wall-to-fluid thermal conductivity ratio, wall-to-fluid thermal

diffusivity ratio and wall thickness to inner radius ratio. The predicted results indicate that, although the parameters

affect the heat transfer characteristics at the early and intermediate periods, the time to reach the steady state does not

change considerably. With the boundary conditions of the present problem, the thermal inertia of the system is mainly

dependent on the flow conditions rather than on the wall characteristics. � 2002 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Analysis of unsteady conjugated heat transfer is im-

portant for control of heat exchangers during startup,

shutdown or any change in the operating conditions.

The transient behavior of heat transfer in laminar in-

ternal flow has been investigated by many authors under

step or periodic change of either boundary or fluid inlet

conditions. Early investigators have considered ex-

tremely thin walls where wall conduction effects are

neglected and conditions at the outer surface of the pipe

or duct prevail along the inner surface. In problems that

are referred to as conjugated, the thermal boundary

conditions along the solid–fluid interface are not known

a priori, and the energy equations should be solved

under the conditions of continuity in the temperature

and/or heat flux.

Conjugated heat transfer problems in laminar duct

flow under steady-state conditions have been studied for

several geometries and for different boundary conditions

since the 1980s and a summary of the literature survey

for the related subject may be found in [1].

The first investigator on the unsteady conjugated

problem was Succec [2], who studied heat transfer to

slug flow between parallel plates with time-varying inlet

fluid or duct wall temperatures. Krishan [3] worked on

fully developed pipe flow with a step change in heat flux

or outer surface temperature. Succec and Sawant [4]

suggested an improved analytical method for the con-

jugated transient heat transfer problem of a parallel

plate duct with periodically varying inlet fluid tempera-

ture. Succec [5,6] extended the same problem to duct

walls exposed to suddenly changing ambient fluid tem-

perature. Cotta et al. [7] studied slug flow inside parallel

plate channels and in circular ducts and solved the

problem analytically for periodic variation of inlet

temperature. Lin and Kuo [8] considered a step change

in uniform wall heat flux over a finite length of a long

circular duct and solved the problem numerically for the

thermal entrance region. The same problem with con-

stant outside surface temperature was studied by Yan

et al. [9]. Analytical methods were used by Travelho and

Santos [10] for a parallel plate duct with slug flow and

varying inlet temperature and by Olec et al. [11] in fully

developed pipe flow. Recently, numerical methods were

used for thick-walled pipes, considering two-dimen-

sional wall conduction, by Schutte et al. [12], with si-

multaneously or thermally developing laminar flow

under constant wall heat flux; by Lee and Yan [13], with

fully developed flow under constant outside surface
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temperature, and by Yan [14], for thermally developing

channel flow with convection from the ambient. In all

these final investigations the related boundary condi-

tions were applied to a finite length of the pipe or

channel.

2. Analysis

In the present problem consideration is given to

laminar pipe flow in an infinitely long pipe

ð�1 < x < þ1Þ which has a finite wall thickness, d. A
schematic diagram of the problem is shown in Fig. 1. At

the far upstream ðx ¼ �1Þ the fluid entering the pipe
has a uniform temperature, T0, which is equal to the
initial temperature of the system. The upstream side of

the pipe ðx < 0Þ is sufficiently long so that the flow is
hydrodynamically developed at the beginning of the

heating section. At time t ¼ 0, the temperature of the
outer surface of the heated section ðx > 0Þ of the wall is
suddenly raised to a new value T1 and remains constant
thereafter until the system reaches the steady-state con-

ditions. All physical properties of the fluid and wall are

constant and viscous dissipation in the flow is neglected.

The above-described problem may be formulated in

non-dimensional form as follows.

In the wall region, the differential equation is
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In the fluid region, the differential equation is
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Nomenclature

a constant of discretization equation

(Eqs. (6a)–(6g))

cp specific heat at constant pressure

d wall thickness

k thermal conductivity

Nu Nusselt number

Pe Peclet number

q heat flux

r radial coordinate

t time

T temperature

T0 initial temperature of the system

T1 outer surface temperature of the downstream

section for t > 0
u velocity

x axial coordinate

Greek symbols

a thermal diffusivity

dr radial position difference

dx axial position difference

Dr radial step size

Dt time step increment

Dx axial step size

q density

Subscripts

b bulk

f fluid

i; j at nodal point i; j
m mean

r radial

s solid

sf solid to fluid ratio

w at wall–fluid interface

x axial

Superscripts
0 dimensionless quantity

o at previous time step

Fig. 1. Schematic diagram of the problem.
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The initial and the boundary conditions are:

at t0 ¼ 0; T 0
f ¼ 0; ð2bÞ

at x0 ¼ �1; T 0
f ¼ 0; ð2cÞ

at x0 ¼ þ1;
oT 0
f

ox0
¼ 0 ðT 0

f ¼ 1 at steady stateÞ; ð2dÞ

at r0 ¼ 0; oT 0
f

or0
¼ 0; ð2eÞ

at r0 ¼ 1; T 0
f ¼ T 0

s ; ð2fÞ

at r0 ¼ 1; oT 0
f

or0
¼ ksf

oT 0
s

or0
: ð2gÞ

Non-dimensional parameters of the problem are defined

as

T 0 ¼ T � T0
T1 � T0

; x0 ¼ x
rwPe

; r0 ¼ r
rw

; d 0 ¼ d
rw

;

t0 ¼ taf
r2w

; ksf ¼
ks
kf
; asf ¼

as
af

and Pe ¼ 2umrwqfcpf
kf

:

Fluid bulk temperatures, T 0
b, interfacial wall heat flux,

qw, and local Nusselt numbers, Nu, are variables of en-
gineering interest and may be computed as follows:

T 0
b ¼ 4

Z 1

0

r0ð1� r02ÞT 0 dr0; ð3Þ

qw ¼ � oT 0
f

or0

����
r0¼1

; ð4Þ

Nu ¼ 2qw
T 0
w � T 0

b

: ð5Þ

3. Solution methodology

The systems of equations (1a)–(1h) and (2a)–(2g) are

solved simultaneously by a numerical finite-difference

approach. Eq. (1a) and conductive terms in Eq. (2a) are

discretized by central-difference schemes and convective

terms in Eq. (2a) are discretized by an exact method de-

fined in [15]. For the transient terms in the equations, a

fully implicit formulation in time is applied to assure

stability in solutions. The following discretization equa-

tion is obtained for a nodal point ði; jÞ in the fluid region:

ai;jT 0
i;j ¼ aiþ1;jT 0

iþ1;j þ ai�1;jT 0
i�1;j þ ai;jþ1T 0

i;jþ1
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0o
i;j ; ð6aÞ
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h i
ðDr0Þj

exp Pe2ð1� r02j Þðdx0Þi�1
� �

� 1
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"
þ 0:5

#
ðDx0Þi; ð6dÞ
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ðdr0Þj�1

"
� 0:5

#
ðDx0Þi; ð6eÞ
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r0jðDx0ÞiðDr0Þj

Dt0
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ai;j ¼ aiþ1;j þ ai�1;j þ ai;jþ1 þ ai;j�1 þ aoi;j: ð6gÞ

Temperature distributions at any time step were

found by the line-by-line method [16] visiting the points

both in the solid and in the fluid region from outer

surface to axis of the pipe and from upstream to

downstream. A consecutive procedure is applied in the

solutions by transferring information between the solid

and the fluid side using the matching conditions of

the problem. For a typical run, Eq. (2f) and therefore the

previously calculated temperature distribution at the

wall–fluid interface is used as a boundary condition for

the fluid region. Iteration is then continued in the solid

side by condition (1h) and so the interfacial heat flux

values are used to transfer information from the fluid to

the solid side.

The grids are laid both in the solid and in the fluid

side and contracted in radial direction near the interface

in both regions. Axial grids are also contracted in the

vicinity of the beginning of the heating (or cooling) zone

where the temperature step occurs and linearly stretched

by taking the axial step size of a grid as 1.5 times the

previous grid, increasing both in downstream and up-

stream directions. The minimum step size used in axial

direction is 0.0001 while in radial direction it is d 0=8.
The axial distances both for the downstream and the

upstream sides, where conditions (1c), (1d), (2c) and

(2d) apply, are estimated by a previous steady-state

solution of the same problem [1] and checked by trial

runs with coarse grid systems. In the solutions satis-

factory results were obtained by using 12 grid spacings

in radial direction (four in the solid and eight in the

fluid side) and from 35 to 45 grid spacings in axial di-

rection. The number of axial stations and therefore the

axial length of the computational region depends on the

parameters of the problem and mainly on the Peclet

number.

A non-uniform time step is also used to speed up the

solutions and to ensure accuracy. The first time step is

taken to be 0.0001 and increased by 10% in the sub-

sequent steps.

Accuracy tests were done by increasing the number

of grid points, by decreasing the time steps, by changing

the locations of the grid points and by reversing the

direction of the traversing and sweeping of the points

during iterations. The differences between the computed

values for any cases were not considerable.
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Another indication of the accuracy of the method is

the asymptotic time-independent results of the runs.

These were compared with the results of [1] and fairly

good agreement was seen.

4. Results and discussions

Inspection of the analysis shows that the results of

the present transient conjugated problem depend on

four non-dimensional parameters, namely the Peclet

number, Pe, wall thickness ratio, d 0, wall-to-fluid con-

ductivity ratio, ksf and thermal diffusivity ratio, asf .
Computations were made for several combinations of

these parameters: Pe ¼ 1, 5 and 20; d 0 ¼ 0:02, 0.1 and
0.3; ksf ¼ 1, 10 and 100 and asf ¼ 0:1, 1 and 10. These
values were selected as appropriate for problems of

engineering interest and from the range that all the

presumed effects of the defined problem, i.e. two-

dimensional wall and fluid axial conduction, are in a

significant level.

Local Nusselt number as traditionally considered in

the presentation of the convection heat transfer results is

not a convenient tool for the conjugate problems [17],

since it contains three unknowns in its definition.

However, local interfacial heat flux gives more useful

information. The results, therefore, are presented by

local interfacial heat flux values but some results were

also given for fluid bulk and inner wall temperature

distributions in order to better understand some of the

transient behavior of the conjugated problem.

Fig. 2 shows the local interfacial heat flux values for a

typical run with average parameter values, for Pe ¼ 5,

d 0 ¼ 0:1, ksf ¼ 10 and asf ¼ 1 at several time steps. Al-
most the same behavior is observed for the other runs

with different combinations of the parameter values.

As can be seen from the figure, there is a substantial

amount of heat flux occurring in the upstream region

due to the penetration of heat opposite to the direction

of flow, resulting from axial wall and fluid conduction.

At early transient period heat flux is from wall to fluid,

but after a certain time the situation is reversed. At

initial times the wall axial conduction is more rapid and

inner wall temperatures are higher than the adjacent

fluid temperatures. When time increases, the fluid axial

conduction increases and the fluid temperatures in the

vicinity of the wall, where convection vanishes, are

higher than the inner wall temperatures, and therefore

negative interfacial heat flux values are obtained. Since

the outer temperature of the wall in the unheated up-

stream side of the pipe is still kept constant for t > 0
with its initial value of T0, the pipe wall loses heat out-
side, resulting in shorter penetration lengths in the wall

than in the fluid region, leading to reverse heat flux from

the fluid to the wall. The amount of heat flux in the

upstream section decreases with increasing upstream

distance and increases with time.

In the downstream side of the pipe the curves rise to a

maximum value and then decrease, and at early times

attain a constant value. At the beginning of the transient

period the radial wall conduction is dominant, which

results in higher rates of increase in the inner wall tem-

peratures than in the fluid temperatures. As time goes

on, heat transfer by convection is more influenced;

therefore the value of the peak decreases and the

downstream uniformity in heat flux values is disturbed.

This trend continues until the system reaches its final

steady state.

Figs. 3 and 4 show the axial distribution of the fluid

bulk and inner wall temperatures, respectively, for the

same run. During the early transient period the down-

Fig. 2. Transient axial distributions of interfacial heat flux. Fig. 3. Transient axial distributions of fluid bulk temperatures.
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stream part of the curves for both T 0
b and T

0
w are mainly

flat as in qw curves, and the values are rather smaller in
the upstream portion. As time increases, the increase in

both fluid and wall axial conduction causes an increase

in both fluid bulk and interfacial temperatures.

As can be seen from the figures, at early times inner

wall temperatures are higher than fluid bulk tempera-

tures and heat flux is from wall to fluid in the upstream

portion of the pipe. As time elapses, the penetration of

heat backward through the upstream side in the fluid

region is more influenced than in the solid side, resulting

in higher fluid bulk temperatures compared to the inner

wall temperatures. This explains why negative heat flux

values are obtained in the upstream section of the pipe.

At steady state, both fluid bulk and inner wall temper-

atures reach their asymptotic value of 1 in the fully de-

veloped region.

In order to investigate the effect of pipe wall thickness

Fig. 5 is drawn for axial distributions of unsteady in-

terfacial heat flux for different d 0 values at three different

time steps. The thermal resistance and heat capacity of

the system are smaller for thinner walls and heat sup-

plied from the outer surface is easily transferred to the

fluid. By this reason, for the early transient period, the

values of interfacial heat flux are higher for smaller wall

thickness. After this early period, when convective heat

transfer is becoming more influenced than conduction in

the wall, with an increasing effect for thin walled pipes,

qw values are lower for smaller d 0 values and the curves

cross at some distance downstream of the heated sec-

tion. For thin walls, lower heat flux downstream is due

to the increase of T 0
b due to early high heat flux and so to

small temperature difference T 0
w � T 0

b. Since thick walls

exhibit more axial conduction, the extent and the mag-

nitude of reverse interfacial heat flux is smaller and be-

gins later in the upstream section. The time required to

reach the steady state is not much affected by the wall

thickness and slightly increased for d 0 ¼ 0:3.
Fig. 6 shows the effect of wall-to-fluid thermal con-

ductivity ratio on axial distributions of unsteady inter-

Fig. 4. Transient axial distributions of inner wall temperatures.

Fig. 5. Effect of thickness ratio on interfacial heat flux.
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facial heat flux. Inspection of this figure reveals that the

length of penetration and the amount of reverse heat

flux in the upstream section are greater with large ksf .
Since large ksf means small thermal resistance in the pipe
wall, interfacial temperatures and therefore heat flux

values are larger in the heated section. The time required

to reach the steady state is longer for small ksf values,
since small ksf corresponds to small asf , which means
large thermal capacity of the pipe wall.

In Fig. 7 comparative results for interfacial heat flux

at some instants of time for different values of Peclet

number are given. In the upstream section of the pipe

both the extent and the magnitude of the reverse heat

flux increased with decreasing Peclet number. This is

because of greater amounts of axial fluid conduction and

penetration of heat backward through the upstream side

in the fluid region for small Peclet numbers. The extent

of postheating in the downstream section is also in-

creased with decreasing Peclet number, since convective

effect is low and therefore the development length is

increasing. The degree of peak is smaller and the drop-

off is more gradual in heat flux values for decreasing

Peclet numbers.

Finally the effect of diffusivity ratio, asf , on interfacial
heat flux is shown in Fig. 8. At early time periods the

values of qw are higher for large asf . This is because large
asf means small thermal capacity of the pipe wall and the
response of qw is faster. When time elapses, convective
heat transfer is dominant over radial pipe conduction

with an increasing effect of decreasing asf . This is due to
the fact that a lower value of asf means a higher value of
kf in a relative sense. Therefore after a certain time pe-
riod qw values are greater for small values of asf . The
development of the curves is faster at initial transient

period for the cases of large asf , but the time to reach the
steady state is the same for all cases. The final shape of

qw curves is independent of diffusivity ratio as expected.

Fig. 6. Effect of conductivity ratio on interfacial heat flux.

Fig. 7. Effect of Peclet number on interfacial heat flux.
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One of the most interesting and surprising outcomes

deduced from the present investigation is that, although

the unsteady behavior of conjugated heat transfer is

considerably affected by the parameters, especially for

early and intermediate periods, the time for the system

to reach the steady state is not much affected by a single

parameter. The cumulative effect of all four parameters,

however, is higher, but not as high as expected. Two

extreme cases may be considered for comparison. The

final time to reach the steady state for the run with

Pe ¼ 1, d 0 ¼ 0:3, ksf ¼ 1 and asf ¼ 0:1 is 8.55 while it is
2.72 for the run with Pe ¼ 20, d 0 ¼ 0:02, ksf ¼ 100 and
asf ¼ 10. This fact is probably due to the boundary
conditions of the present problem which are different

than those in [12–14], in which the heated portion of the

tube is bounded in a finite length and the outer wall is

insulated outside of this region. This result indicates that

the thermal inertia of the system is mainly dependent on

the flow conditions rather than on the wall characteris-

tics.

5. Conclusions

In the present paper, a transient conjugated heat

transfer problem for thermally developing laminar pipe

flow is considered, which takes into account radial and

axial conduction both in the wall and in the fluid region.

The problem is solved numerically by a finite-difference

method and a parametric study is done to investigate the

effects of four defining parameters, Pe, d 0, ksf and asf . The
results may be summarized as follows.

1. Considerable amount of heat is conducted through

the upstream side both in the wall and in the fluid re-

gion, and this results in preheating of the fluid before

entering the heated section. Due to the outer boundary

temperature of the unheated part of the pipe, the wall

loses energy to the outside, and the length of backward

penetration of heat by axial conduction may be greater

in the fluid region. This results in negative interfacial

heat flux, i.e. from fluid to the wall in the upstream

section of the pipe.

2. In the downstream side of the pipe, interfacial heat

flux values rise to a maximum and then decrease. At

early transient period they attain a constant value, and

as time goes on, heat flux values decrease monotonically

until the system reaches the steady state.

3. The effect of wall conduction on heat transfer is

more pronounced for high values of d 0, ksf and asf , and
for small values of Pe. The effect of the parameters is
higher in the early and intermediate transient periods

and the time to reach the steady state does not change

much with the parameters.
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